Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Coverage-guided fuzzing has become mainstream in fuzzing to automatically expose program vulnerabilities. Recently, a group of fuzzers are proposed to adopt a random search mechanism namely Havoc, explicitly or implicitly, to augment their edge exploration. However, they only tend to adopt the default setup of Havoc as an implementation option while none of them attempts to explore its power under diverse setups or inspect its rationale for potential improvement. In this paper, to address such issues, we conduct the first empirical study on Havoc to enhance the understanding of its characteristics. Specifically, we first find that applying the default setup of Havoc to fuzzers can significantly improve their edge coverage performance. Interestingly, we further observe that even simply executing Havoc itself without appending it to any fuzzer can lead to strong edge coverage performance and outperform most of our studied fuzzers. Moreover, we also extend the execution time of Havoc and find that most fuzzers can not only achieve significantly higher edge coverage, but also tend to perform similarly (i.e., their performance gaps get largely bridged). Inspired by the findings, we further propose Havoc𝑀𝐴𝐵, which models the Havoc mutation strategy as a multi-armed bandit problem to be solved by dynamically adjusting the mutation strategy. The evaluation result presents that Havoc𝑀𝐴𝐵 can significantly increase the edge coverage by 11.1% on average for all the benchmark projects compared with Havoc and even slightly outperform state-of-the-art QSYM which augments its computing resource by adopting three parallel threads. We further execute Havoc𝑀𝐴𝐵 with three parallel threads and result in 9% higher average edge coverage over QSYM upon all the benchmark projectsmore » « less
-
Defect prediction aims to automatically identify potential defective code with minimal human intervention and has been widely studied in the literature. Just-in-Time (JIT) defect prediction focuses on program changes rather than whole programs, and has been widely adopted in continuous testing. CC2Vec, state-of-the-art JIT defect prediction tool, first constructs a hierarchical attention network (HAN) to learn distributed vector representations of both code additions and deletions, and then concatenates them with two other embedding vectors representing commit messages and overall code changes extracted by the existing DeepJIT approach to train a model for predicting whether a given commit is defective. Although CC2Vec has been shown to be the state of the art for JIT defect prediction, it was only evaluated on a limited dataset and not compared with all representative baselines. Therefore, to further investigate the efficacy and limitations of CC2Vec, this paper performs an extensive study of CC2Vec on a large-scale dataset with over 310,370 changes (8.3 X larger than the original CC2Vec dataset). More specifically, we also empirically compare CC2Vec against DeepJIT and representative traditional JIT defect prediction techniques. The experimental results show that CC2Vec cannot consistently outperform DeepJIT, and neither of them can consistently outperform traditional JIT defect prediction. We also investigate the impact of individual traditional defect prediction features and find that the added-line-number feature outperforms other traditional features. Inspired by this finding, we construct a simplistic JIT defect prediction approach which simply adopts the added-line- number feature with the logistic regression classifier. Surprisingly, such a simplistic approach can outperform CC2Vec and DeepJIT in defect prediction, and can be 81k X/120k X faster in training/testing. Furthermore, the paper also provides various practical guidelines for advancing JIT defect prediction in the near future.more » « less
-
While CUDA has become a mainstream parallel computing platform and programming model for general-purpose GPU computing, how to effectively and efficiently detect CUDA synchronization bugs remains a challenging open problem. In this paper, we propose the first lightweight CUDA synchronization bug detection framework, namely Simulee, to model CUDA program execution by interpreting the corresponding LLVM bytecode and collecting the memory-access information for automatically detecting general CUDA synchronization bugs. To evaluate the effectiveness and efficiency of Simulee, we construct a benchmark with 7 popular CUDA-related projects from GitHub, upon which we conduct an extensive set of experiments. The experimental results suggest that Simulee can detect 21 out of the 24 manually identified bugs in our preliminary study and also 24 previously unknown bugs among all projects, 10 of which have already been confirmed by the developers. Furthermore, Simulee significantly outperforms state-of-the-art approaches for CUDA synchronization bug detection.more » « less
An official website of the United States government

Full Text Available